
3062 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 8, AUGUST 2013

Asymmetric Correlation: A Noise Robust Similarity
Measure for Template Matching

Elhanan Elboher and Michael Werman

Abstract— We present an efficient and noise robust template
matching method based on asymmetric correlation (ASC). The
ASC similarity function is invariant to affine illumination changes
and robust to extreme noise. It correlates the given non-
normalized template with a normalized version of each image
window in the frequency domain. We show that this asymmetric
normalization is more robust to noise than other cross correlation
variants, such as the correlation coefficient. Direct computation
of ASC is very slow, as a DFT needs to be calculated for each
image window independently. To make the template matching
efficient, we develop a much faster algorithm, which carries out
a prediction step in linear time and then computes DFTs for only
a few promising candidate windows. We extend the proposed
template matching scheme to deal with partial occlusion and
spatially varying light change. Experimental results demonstrate
the robustness of the proposed ASC similarity measure compared
to state-of-the-art template matching methods.

Index Terms— Asymmetric correlation, cross correlation, noise
robust similarity, phase correlation, template matching.

I. INTRODUCTION

Template matching is an important tool in image processing
and computer vision. A template, a relatively small image
patch, is sought within a larger reference image. Finding such
correspondences is useful for many computer vision tasks such
as object tracking [1], 3D reconstruction [2], image editing [3]
and medical imaging [4]. For real world applications, template
matching methods need to be both efficient and robust to
various visual distortions.

In this paper we address the problem of template matching
in the presence of extreme noise where common template
matching methods fail. We propose an efficient method based
on a new similarity function, asymmetric correlation (ASC).
The proposed method is also useful when the noise distortion
is combined with poor illumination and other photometric
distortions.

The proposed ASC similarity is a robust cross correla-
tion variant. As described below (Section III-B), most cross
correlation variants use one of two common normalizations.
In symmetric normalization both the compared vectors are
normalized the same way, either in the spatial domain (in
normalized cross correlation) or in the frequency domain (in
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phase correlation, see Section III-B). In filter design only the
template is modified and then is correlated with the reference
image.

The ASC similarity measure takes a different approach.
Here, the image windows are normalized independently in the
frequency domain and then correlated with the unmodified
template q .

In Section VI we analyze the effect of this asymmetric
normalization, and show that it makes ASC highly robust to
noise. For the additive Gaussian noise model, ASC is proven
to be more robust than the matched filter [5] and the popular
normalized cross correlation, NCC, which is also known as the
correlation coefficient or zero-mean NCC. The robustness of
ASC is demonstrated experimentally in Section V for various
noise models and additional photometric distortions.

A. Efficient Computation

As shown by Lewis [6], most cross correlation variants
can be computed efficiently using the fast Fourier transform
algorithm (FFT) and a few additional operations. However, this
precludes fast computation of ASC since the Fourier spectrum
of each image window is different. By direct computation, an
FFT should be calculated for each image window indepen-
dently. Given a N × N iamge and a M × M template, the time
complexity of this process is O(N2 M2logM).

In Section IV we propose a much faster algorithm that
operates in two steps. The first step computes partial ASC
scores and predicts the most promising candidate windows.
To do so, we developed a linear time projection scheme
on a single Fourier basis vector using the integral image
technique [7]. This scheme is as efficient as previous sliding
DFT methods [8] but is simpler, more exact and numerically
stable (see Section IV-A).

In the second step an exact ASC similarity is computed
using FFT but only for a few promising candidates. The
proposed algorithm, implemented in C++, is more than 700
times faster than the exact ASC computation with an almost
identical success rate (see Section V-C).

B. Extensions

The ASC similarity is robust to noise and invariant to global
affine illumination change. In Section IV-E we extend the
ASC based template matching scheme to also deal with partial
occlusion and spatially varying illumination. An experimental
evaluation is presented in Section V-B.

The rest of this paper is organized as follows. In Section II
we review related work. Section III defines the proposed asym-
metric correlation (ASC) and compares it with common cross
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correlation variants. Section IV presents a fast algorithm for
ASC template matching and an extension for partial occlusion.
Section V presents our experimental results. In Section VI we
analyze the noise robustness of ASC mathematically using an
additive white Gaussian noise model. Section VII summarizes
our work.

II. RELATED WORK

We briefly review the main similarity and distance functions
used for template matching, with a focus on correlation
related functions. More complete reviews can be found in
[5], [9], [10].

A. SSD and SAD

The sum of squared differences (SSD) is probably the most
popular distance measure for many applications, including
template matching, due its nice mathematical properties and
very efficient computational schemes (see review and perfor-
mance evaluation in [11]). However, SSD is very sensitive to
noise and illumination change. Another popular distance is the
sum of absolute differences (SAD) which is robust to outlier
(’salt-pepper’) noise and partial occlusion. However, SAD is
also sensitive to additive noise and illumination change.

B. NCC and Other Cross Correlation Variants

One very useful similarity is the normalized cross corre-
lation (NCC). NCC is invariant to affine illumination change,
and more robust to noise than SSD and SAD. Several efficient
methods have been proposed for template matching using
NCC [12]–[15]. Most of these methods compute a partial
similarity score for each candidate image window and use
the lower and upper bounds to eliminate or skip irrelevant
candidates.

Although NCC is more robust to noise than SAD and
SSD, it is sensitive to outliers and partial occlusion. Some
NCC related methods overcome such distortions using gradient
information, either by correlating the gradient magnitudes
(e.g. [16]) or the partial derivatives [17]. This method, called
the matching function (MF), was shown in [18] to outperform
many other methods in the presence of spatially varying
illumination and real noise. An experimental comparison to
the MF method is presented in Sections V-A and V-B.

Other cross correlation variants include the phase correlation
(PC) similarity [19] and correlation filters such as the phase
only filter (POF) [20], the synthetic discriminant function
(SDF) [21], the minimum average correlation energy filter
(MACE) [22], the maximum average correlation height filter
(MACH) [23] and optimal tradeoff filters [5]. The relation
between ASC and these cross correlation variants is discussed
in detail in Section III-B.

C. Robust Metrics and Additional Methods

Another important family is composed of robust metrics,
which are less affected by outlier noise than cross correlation
related methods. In addition to SAD, these include Hamming
based distances [24], [25] and M-estimators such as Huber’s

estimator, Tukey’s estimator or trimmed SAD. Fast template
matching using M-estimators was suggested in [26] using a
hierarchical approach and in [27] by decomposition to a sum
of cross correlations computed by multiple FFTs.

Other robust similarity functions were proposed in [28] that
used voting scheme to overcome outliers and partial occlu-
sions. Another method described in [29] uses higher order
statistics to overcome strong Gaussian noise. This method,
called M4c, is computed efficiently using a sum of cross
correlations, similar to [27]. A comparison with M4c is
presented in Section V-A.

A recent method that has attracted attention is matching
by tone mapping (MTM) [30]. This method is invariant to
an arbitrary intensity transformation (’tone mapping’) between
the query template and the reference image. While ASC is
only invariant to affine intensity transformation, it is shown
experimentally in Section V to be more robust to noise than
MTM.

III. ASYMMETRIC CORRELATION (ASC) AND RELATED

CORRELATION FUNCTIONS

A. ASC Definition

Let q be a 2D template (query) of size M × M , and w a
candidate image window of the same size. For simplicity we
consider an odd size M = 2m + 1, and determine the centers
of the template and the image window as the origins q00, w00.
In the origin, the cross correlation between q and w is the dot
product

qT w =
m∑

i=−m

m∑

j=−m

qi j wi j

= 1

M2

m∑

u=−m

m∑

v=−m

Quv W∗
uv (1)

where Quv and Wuv are the Fourier coefficients of q and w
(the second equality follows from Parseval’s theorem).

The asymmetric correlation (ASC) is defined by modifying
the dot product as follows:

ASC(q, w) = cq

∑

(u,v) �=(0,0)

Quv
W∗

uv

|Wuv | (2)

The zero frequency is ignored, and the amplitudes of the
Fourier coefficients of all the other windows are normalized.

The total sum is normalized by cq = (∑
(u,v) �=(0,0)

|Quv |
)−1.

This bounds ASC to be between −1 and 1 independent of the
template size.

An equivalent definition of ASC can be expressed by the
amplitude | · | and the phase θ(·) of the Fourier coefficients,

ASC(q, w) = cq

∑

(u,v) �=(0,0)

|Quv | cos
(
θ(Quv )−θ(Wuv)

)
(3)

This polar form is useful for the analysis of ASC noise
robustness (see Section VI). Due to the conjugate symmetry of
the DFT of real vectors, Equation 3 does not include imaginary
sine elements that cancel each other.

Due to the normalization by cq , ASC is invariant to affine
illumination changes of the template q . In addition, from
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Equations 2 and 3 it follows that ASC is invariant to affine
illumination changes of the reference image; i.e.,

ASC(q, aw + b) = ASC(q, w), a > 0 (4)

Adding a constant b to w changes only W0,0 which is ignored
by ASC. By Fourier linearity, the other coefficients Wuv are
multiplied by a. This does not affect ASC, which considers
the normalized window coefficients (Equation 2). In terms of
Equation 3, the phase θ(Wuv ) is unchanged.

B. Comparison With Other Correlation Variants

In the following we review common cross correlation vari-
ants and highlight the basic differences between them and the
proposed ASC. These help to account for the differences in
performance between ASC and the other correlation related
methods while looking for a small template in a large noisy
image.

1) Symmetric Normalization Variants: Using the notations
of q and w, the normalized cross correlation (NCC) is defined
as

NCC(q, w) =
(q − μq

σq

)T (w − μw

σw

)
(5)

where μq , σq and μw, σw are the means and standard devi-
ations of the template (q) and the window (w). We refer to
this as symmetric normalization, since the template and each
image window are normalized the same way.

The phase correlation (PC) [19] is also based on a symmet-
ric normalization:

PC(t, f ) =
∑

(u,v) �=(0,0)

Tuv F∗
uv

|Tuv ||Fuv | (6)

where Tuv and Fuv are the Fourier coefficients of t and f (the
notation change from q, w to t , f is explained below).

Unlike NCC and PC, the ASC similarity is based on asym-
metric normalization. In Equation 2, the normalized window
coefficients Wuv/|Wuv | are correlated with the unnormalized
template coefficients Quv . The rationale for this asymmetry is
that normalizing Quv removes important information about the
sought object. On the other hand, when the reference image is
noisy, normalizing Wuv reduces the noise effect significantly.
This non-intuitive observation is proved in Section VI based
on the statistics of natural images.

There is a crucial difference between PC and ASC as
regards template matching. The PC similarity has a sharp
correlation peak, which makes it useful for an accurate global
image registration [31], [32]. PC has also been used for
block matching; i.e., alignment of two image patches that
are known to be shifted by a few pixels, using a coarse to
fine approach [2]. However, implementing PC for full search
template matching is more complicated. Computing PC(q, w)
between the template q and each image window w is computa-
tionally expensive since the DFT has to be computed for each
window w independently. Given two images of different sizes,
the most common solution is to expand the smaller image to
the size of the larger one by zero padding. Thus in Equation 6
the notation F for the DFT of the complete N × N reference

image f , and T for the DFT of t , the N × N expansion of
the template q by zero padding.

Since the template q is typically much smaller than the
reference image, the DFT F is mostly determined by irrelevant
data that do not come from window w which best matches
q . This reduces the detection rate of PC significantly (see
Section V-A). An improvement is possible by dividing the
image into smaller regions and computing a PC for each of
them. This has an overhead of computing multiple DFTs for
overlapping regions. Instead, the algorithm that we propose
for ASC in Section IV can be modified for fast computation
of PC(q, w) without an additional overhead. The proposed
algorithm for PC(q, w) performs better than PC(t, f ) both
on clean and noisy images and results in a very sharp and
accurate peak. However, it is not as robust to noise as ASC
(see Section V).

2) Correlation Filters: Given a single template q (or multi-
ple templates), a correlation filter hq can be designed and
correlated with the reference image. The cross correlation
(hq)T w is then computed instead of qT w (see Equation 1).
This may be useful where a specific criterion needs to be
optimized; e.g. peak sharpness. It is also valuable in capturing
the consensus of multiple training examples (templates) that
represent the variation of an object class [5].

In this paper we focus on template matching based on a
single example. One common filter that is based a single
template is the matched filter, which is the template q itself, or
Q in the frequency domain.1 The matched filter is the linear
correlation filter that is most robust to noise [5]. However,
it has no sharp correlation peak and is therefore not as
discriminating.

Another filter based on a single template is the phase only
filter (POF) [20]. POF is defined by the normalized template’s
coefficients Quv/|Quv |. Due to this normalization POF has a
sharp correlation peak. However, the normalization also makes
POF sensitive to noise since high template frequencies are
amplified. These frequencies contain unreliable information
that varies even between slightly different instances of the
same object. The proposed ASC similarity does exactly the
opposite of POF: the noisy window coefficients are nor-
malized, whereas the reliable template coefficients remain
unchanged (Equation 2). For this reason ASC is both more
robust to noise and more discriminating than POF.

Given multiple example templates, more advanced correla-
tion filters can be designed such as SDF, MACE and MACH.
An optimal tradeoff filter can also be defined that maximizes a
linear combination of the criteria optimized by these filters. In
the case of a single example, SDF and MACH reduce to the
matched filter. The MACE filter reduces to an inverse filter
defined by Quv/|Quv |2. The optimal tradeoff between SDF
and MACE filter reduces to Quv/(α+β|Quv |2) where α and β
are the tradeoff parameters.

The SDF-MACE optimal tradeoff filter is more robust to
noise than POF. However, as shown in Section V, optimal

1It is common to define the matched filter by the complex conjugate Q∗.
This is accepted while inverting the order of the scalar product (Equation 1)
from qT w to wT q, which is equivalent.



ELBOHER AND WERMAN: ASC: A NOISE ROBUST SIMILARITY MEASURE FOR TEMPLATE MATCHING 3065

tradeoff filters based on a single example also fail to find
templates that are matched correctly by common similarities
as NCC (see Section V-A).

IV. ALGORITHM

A naive implementation of ASC based template matching
is very slow since an FFT computation is required for each
image window. Given a template q of size M × M and a
reference image f of size N × N , the time complexity is
O(N2 M2 log M).

We present a much faster two step algorithm for finding
the window w which maximizes ASC(q, w). The first step
consists of an efficient prediction of promising candidate
windows. In the second step ASC is computed exactly but only
for these few candidates. In the following we describe the main
steps of our algorithm. Then we extend the basic computation
scheme to deal with partial occlusion and spatially varying
illumination of the sought template.

A. Fast Fourier Windows Projection (FFWP)

The core of the proposed algorithm is an efficient scheme
that computes the Fourier coefficient (amplitude and phase)
of a single frequency Wuv for all image windows w. The
proposed FFWP scheme has linear time complexity in the
image size, O(N2), regardless of the template (or window)
size.

Let f (x, y) be the grayscale image values and w an M × M
window centered at (x0, y0) (i.e., w0,0 = f (x0, y0)). For
simplicity we use an odd size M = 2m + 1 (as in Equation 1
above). For each frequency (u, v), Wuv is the projection of w
on the (u, v) basis vector:

Wuv =
x0+m∑

x=x0−m

y0+m∑

y=y0−m

f (x, y)e− 2π i
M

(
u(x−x0)+v(y−y0)

)

= e
2π i
M (ux0+vy0)

x0+m∑

x=x0−m

y0+m∑

y=y0−m

f (x, y)e− 2π i
M (ux+vy)

(7)

Each addend in the resulting sum is computed from a single
pixel by its coordinates x, y and its grayscale value f (x, y).
We use the integral image technique [7] to compute the sum
of the addends in each window w. This is done for all the
image windows in O(N2) operations regardless of window
size. Then for each location (x0, y0) we multiply the resulting
sum by exp

(
(2π i/M)(ux0 + vy0)

)
.

The proposed FFWP scheme extends our previous work in
the cosine transform domain [33]. It provides a simple and
exact alternative to previous linear time techniques such as
the sliding DFT (the common methods are reviewed in [8]).
These techniques compute the Fourier coefficients of local
windows using a recursion formula derived from the Fourier
circular shift property [34]. Therefore they perform repeated
multiplications of complex numbers, which is numerically
unstable [8]. In addition, these techniques use windowing
functions which affect the precision of the Fourier coefficients.
On the other hand, FFWP computes the exact windows’

Fourier coefficients without involving windowing functions.
Our scheme is not recursive, and therefore it is numerically sta-
ble. An additional advantage of FFWP, which is not discussed
in this paper, is that efficient computation can be performed in
sampled locations. Given the integral image, one can compute
the Fourier coefficients of any window independently, which
is complicated when using recursive methods (see [8]).

B. Prediction Using Partial ASC Similarity

The above FFWP scheme is used to compute partial ASC
similarity scores on the largest magnitude template frequen-
cies. Tipcally these frquencies are low, thus the prediction step
is equivalent to full search in a coarse resolution reference
image.

For each window w, the partial ASC score is

ASC(k)(q, w) = cq

∑

(u,v)∈F
Quv

W∗
uv

|Wuv | (8)

The set F contains the k frequencies of the template with
the largest amplitudes,2 which makes the complexity of the
prediction step O(k N2). k is typically a small number (see
below).

Fast template matching algorithms such as [12], [13], [15],
[35] use partial scores to bound the full score and eliminate
irrelevant candidates. However, for the ASC similarity, tight
bounds require too many frequencies (large k) and the compu-
tation becomes inefficient. Therefore we do not use the partial
scores for elimination of irrelevant candidates, but to predict
the best candidates.

As demonstrated in Figure 1(c), the ASC similarity has
a very sharp peak in the correct match. Since most of the
similarity score is determined by the leading frequencies of the
template, the partial scores ASC(k) of true matches are much
higher than the partial scores of non matches even when k
is small. Good candidates for the correct match can therefore
predicted when the peak of the partial score ASC(k) is sharp
enough.

To avoid parameter tuning, we add the contribution of the
next frequency (i.e. increase k by 1) until only a small fraction
p (e.g. p = 0.001) remains of promising candidates. An image
window is defined as a promising candidate if its partial score
is at least a = 0.8 times the maximal partial value ASC(k)

max .3

Usually 6–30 frequencies are computed. This mainly depends
on the template structure. We limit k to below 50 for the
exceptional cases where we are left with a proportion larger
than p of promising candidates.

C. Finding the Best Match

In the final step we compute the exact ASC similarity
(Equation 2) for all the remaining promising candidates using

2F does not contain the zero frequency. In addition, due to Fourier conjugate
symmetry, we skip one frequency from each pair (u, v), (−u,−v).

3A straightforward implementation requires two passes over the image: one
for finding ASC(k)

max and another to compare it with the partial score of each
window. For efficiency we make a single pass and compare the partial scores
with the current maximum, which could be a slight under estimate of ASC(k)

max .
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(a) (b)

(c) (d)

Fig. 1. Template matching by the proposed fast ASC scheme. This figure is best viewed in color. (a) A template taken from the ’Leuven’ image is sought
in the same image after adding strong Gaussian noise (σ = 0.3, or 76.5 out of 255). The original template is shown in the top left corner (white square).
The correct match, which was found by ASC, is delineated by the lower right yellow square. Figures (b,c,d) show similarity maps scaled to [0, 1] where
blue indicates low similarity and red indicates high similarity. (b) Partial ASC score provided by the prediction step of our fast algorithm (Section IV-B). We
compute this score by an efficient projection of all the image windows on the frequency domain (Section IV-A). (c) Exact ASC similarity; note the unique
and very sharp peak. Computing the complete similarity map is time consuming. Due to the prediction step, our proposed algorithm focuses only on a few
promising candidate windows (d). This dramatically reduces the computation time (see Section V-C).

FFTs. The complexity of this step is O(M2 log M) per candi-
date window. Usually the number of promising candidates is
very small. Therefore in practice this step requires less time
than the prediction step.

The candidate with the highest score is returned as the best
match. Although theoretically the true best match might be
missed during the prediction step, in practice it is very rare
that many irrelevant candidates have higher partial scores even
with the first few leading frequencies.

D. Modification for Phase Correlation

The above algorithm can be modified to solve the problem
of fast computation of the phase correlation with the tem-
plate, PC(q, w) (see the discussion in Section III-B.1 above).
As for ASC, the partial PC score can be computed by changing
Equation 8 as follows:

PC(k)(q, w) =
∑

(u,v)∈F

Quv W∗
uv

|Quv ||Wuv | (9)

which is equivalent to computing ASC(k)(q̃, w), where q̃ is
the result of normalizing each template’s Fourier coefficient
Quv by its amplitude.

As in Equation 8, the set F contains the template’s frequen-
cies Quv with the largest amplitudes. Although the magnitudes
are ignored in PC(k), using these leading frequencies is
important since they are more robust to noise than others (see
below in Section VI).

The rest of the algorithm remains the same: the windows’
frequencies are computed by the FFWP scheme (section
IV-A), and a few promising candidates are predicted. In the

final step PC(q, w) is computed exactly for these promising
candidates. Experimental evaluation of the proposed algo-
rithm for PC(q, w), compared with the common computation
of PC(t, f ) (Section III-B.1, Equation 6) is presented in
Section V-A.

E. Extension Using a Robust Sum

The ASC similarity as defined in Section III-A is invariant
to affine illumination change, but not to spatially varying
illumination change or to partial occlusion. We deal with these
distortions by matching the image with small sub-templates
and combining their similarity scores using a robust sum:

ASCsub =
∑

i

max
(

0, ASC(q(i), w(i))
)

(10)

where q(i) are sub-templates and w(i) are the corresponding
sub-windows.4

ASCsub is robust to partial occlusion which typically
changes only some of the sub-windows. Since each sub-
window w(i) is normalized independently, ASCsub is also
robust to non uniform illumination change.

To predict the best candidates, the windows’ Fourier coef-
ficients are computed by the FFWP scheme (Section IV-A)
but this time for a smaller window size corresponding to the
sub-templates. In our experiments we used five overlapping
sub-templates of the same size: top left, top right, bottom left,
bottom right and center.

4We found that alternatives such as maximum, do not perform as well as
the robust sum.
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Since each sub-template can have a different order of
frequency amplitudes, we use a predefined order so that low
frequencies (u, v) are computed first. We store the partial ASC
scores of each sub-template. After computing a new coefficient
Wuv and normalizing it, each entry is updated by adding
the multiplication to the coefficient of the appropriate sub-
template. This eliminates the need for repeating the whole
computation many times and does not significantly increase
the execution time compared to template matching using the
original template.

An experimental evaluation of ASCsub is presented in
Section V-B compared to the original ASC and other simi-
larities.

V. RESULTS

We evaluated the performance of the proposed ASC tem-
plate matching scheme on several image data sets. In all our
experiments the templates were taken from high quality images
(i.e. clean, bright and sharp images) and were sought in poor
quality images containing noise and other distortions such as
poor illumination, light changes, blur, etc. For each distortion
ASC was compared against other relevant similarity functions
as listed below.

A. Noise, Blur, Poor Illumination

1) Experimental Setting: In this experiment we tested
ASC and other template matching methods with noise pro-
duced by three models: additive Gaussian noise, multiplica-
tive Gaussian noise and outlier (“salt-pepper”) noise. In the
additive Gaussian model, the value of each pixel was changed
by adding noise sampled i.i.d from a Gaussian distribution
N(0, σ 2). In the multiplicative Gaussian model, the value of
each pixel was multiplied by N(1, σ 2). In the salt-pepper
noise model, the image values in random locations (x, y) were
replaced by 0 or 1 randomly. The parameter of this noise
model was the proportion of the corrupted pixels.

For each noise model (additive, multiplicative, outliers) we
examined the performance in three conditions: (1) without
additional distortions (noise only), (2) when the reference
image had poor illumination, (3) when the reference image
was blurred by camera defocus. We produced test images for
all the possible combinations by corrupting the source with
increasing amounts of noise.

For the noise only experiments we used a test set of
204 templates, each of size 61 × 61. The templates were
selected from three large grayscale images: two images used
in [36] (available in [37]), ’leuven-1’ (80 templates) and
’bikes-1’ (54 templates), and an additional test image ’boats’
(70 templates). The templates were selected by sampling the
images uniformly and eliminating flat windows with standard
deviations smaller than 0.1.

For the experiments involving noise and poor illumination
we chose 83 templates from the bright image ’leuven-1’ and
sought them in the dark image ’leuven-6’, which was captured
from a slightly different viewpoint with poor illumination. For
the experiments involving blur and noise, 62 templates from

’bikes-1’ were sought in ’bikes-6’ which was captured with a
defocused camera.5

A mismatch was defined as returning a center location with
an Euclidean distance greater than 5 pixels from the ground
truth center location (more than 85% overlap between the
result window and the ground truth window). Because of
the extreme noise that was added to the images, setting a
threshold smaller than 5 pixels reduced the success rate of all
the methods almost to zero. On the other hand, setting a larger
threshold (e.g. 10, 15) had almost no effect on the results.
Most of the mismatches were caused by finding a completely
random location.

2) Compared Methods: ASC was compared to the following
functions: the SSD and SAD metrics, three correlation vari-
ants: NCC, phase correlation (PC) and the matching function
(MF) [17], two correlation filters: the phase only filter (POF)
and an SDF-MACE optimal tradeoff filter (OTF, see below),
the moment based method M4c [29] and the pattern-to-window
variant of the MTM method [30] (using 20 bins of gray levels).

For the phase correlation we tested two variants. One was
the common PC(t, f ) between the expanded template and the
complete reference image (see Section III-B.1, Equation 6).
This is denoted as ’PC-global’. The second was PC(q, w)
between the template q and each local window w, which was
computed using our efficient algorithm (Section IV-D). This
is denoted as ’PC-local’.

The optimal tradeoff filter (OTF) was constructed by nor-
malizing each of the template’s Fourier coefficients as fol-
lows: Quv/(|Quv |2 + M2).6 This is the optimal tradeoff filter
between SDF and MACE based on a single training example.

3) Results: The results of our experiment are shown in
Figure 2. ASC performed best in all cases when the ref-
erence image was distorted by an additive or multiplicative
Gaussian noise, with or without additional distortions (blur
or poor illumination). The results of the additive Gaussian
noise experiments support the thoretical analysis presented in
Section VI.

In two of the salt and pepper noise experiments (noise only,
noise + blur) ASC ranked second best with a success rate
lower than SAD but higher than all the other methods. SAD,
however, is sensitive to affine illumination change. Thus it had
low success rate in the experiment involving salt and pepper
noise and poor illumination. In this experiment ASC again
outperformed all the other methods.

Another important point is the success rate of PC, POF
and OTF. These methods had success rates of 100% when
seeking a template q in the image from which it was chosen,
as done in the noise only experiments with a zero noise level.
However, when seeking a template in another noiseless image
of the same scene, the success rate of these methods was much
lower (see the zero noise level in the experiments involving
poor illumination and image blur; note that NCC and other
methods had a 100% success on the same templates). This
can be accounted for by the normalization of the template

5Due to the shifts between image pairs, the set of used templates were
sampled differently than in the noise only experiment.

6Several different weights of |Quv |2 and M2 were examined, but did not
impact the success rate significantly.
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Fig. 2. Results of the synthetic noise experiments (Section V-A). First row: additive Gaussian noise without additional distortions (a), with poor illumination
(b), and with image blur (c). Second row: multiplicative noise without additional distortions (d), with poor illumination (e), and with image blur (f). Third
row: outlier (salt-pepper) noise without additional distortions (g), with poor illumination (h), and with image blur (i). The proposed ASC method is marked
by the thick blue line.

Fourier spectrum which amplifies high frequencies. These
frequencies contain unreliable information that varies even
between slightly different instances of the same object. On
the other hand, it can be seen that normalizing the Fourier
spectrum of each image window, as done by ASC and PC-
local, makes the detection more robust.

Note also that computing PC-local using our proposed algo-
rithm (Section IV-D) was significantly better than computing
PC-global using the standard method (Section III-B.1). This is
because PC-local considers the DFT of local image windows,
which is not the case for PC-global.

4) Aerial Dataset: We tested ASC on another dataset
published by [14] which consists of a large aerial image
(1453 × 1548 pixels) and 59 templates of size 99 × 99. The
dataset is available in [38]; example templates are shown in
Figure 3(a). ASC was compared to SSD, NCC and PC in the
presence of additive Gaussian noise. As ground truth we used
the locations where SSD and NCC agreed on the noiseless
reference image. The mismatch threshold was 5 pixels. As in
the previous experiment, setting a larger threshold had almost
no effect on the results.

As shown in Figure 3(b), our proposed ASC outperformed
the other methods. The advantage of using PC-local instead
of PC-global is also demonstrated.

B. Partial Occlusion and Spatially Varying Light

The ASCsub variant was tested on two datasets, Leuven
and Guitar. The Leuven dataset contains two images used in
the noise experiment (Section V-A), one clean and one noisy
(σ = 0.1) and 83 bright clean templates. The reference images
in this dataset have poor illumination, for which standard
methods used to overcome partial occlusion (e.g. SAD) are
not appropriate. ASC, on the other hand, is invariant to illu-
mination change. We compared ASC to NCC, POF and to two
variants of the MF method [17] with 2-neighbors (MF2) and
1,2-neighbors (MF1,2) which were shown in [18] to be very
robust in similar conditions. All the methods were examined
both in their original form; i.e., matching a template to a
single image window, and using the sub-templates extension
described in Section IV-E.

In each of the 83 tests on the Leuven dataset, the left half
of the target template was occluded by a black rectangle.

The results are shown in Table I. The success rate of
ASC was higher than NCC and POF but lower than the
MF variants. Using the sub-template extension improved the
results significantly: ASCsub was very close to MF when the
reference image was clean, and had an equal success rate to the
best MF variant (MF2 with single template) when the reference
image was noisy.
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TABLE I

PARTIAL OCCLUSION AND SPATIALLY VARYING LIGHT (SECTION V-B). THE TABLE SHOWS THE NUMBER OF CORRECT MATCHES OUT OF THE TOTAL

NUMBER OF TESTS. FOR EACH METHOD THE TABLE INDICATES THE RESULTS OF MATCHING A SINGLE TEMPLATE (LEFT SIDE) AND USING

A ROBUST SUM ON SUB-TEMPLATES (RIGHT SIDE, SEE SECTION IV-E)

Dataset
Single Template Sub-Templates

MF2 MF1,2 POF NCC ASC MF2 MF1,2 POF NCC ASC

Leuven (occlusion, no noise) 72/83 72/83 32/83 29/83 54/83 73/83 73/83 19/83 30/83 69/83

Leuven (occlusion, noise std = 0.1) 55/83 53/83 24/83 26/83 47/83 43/83 42/83 14/83 21/83 55/83

Guitar [18] (varying light) 64/70 64/70 50/70 61/70 59/70 66/70 66/70 58/70 64/70 67/70
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Fig. 3. Experimental results on the Aerial image dataset [14] (Section
V-A). (a) shows several template examples. (b) shows the success rate in
the presence of additive Gaussian noise.

(b)(a)

Fig. 4. Guitar dataset [18], [39]. (a) sample image (number 5); (b) the
7 sought templates. The proposed ASCsub variant was the best performing
method on this dataset, slightly better than MF [17] (see Table I).

NCC had a low success rate since it is less discriminating
than ASC; i.e., its peak is not as sharp. Since the left half of
the template was occluded, only two sub-windows were not
distorted (top right and bottom right). Thus, the sum of two
smooth peaks was not sufficient for NCC to find the correct
match. POF was also unsuccessful on this task. Although POF
has a sharp peak, it is sensitive even to small distortions (see
Section I and Section V-A). On the other hand, ASC exhibited
good performance since it is both a discriminating and robust
similarity measure.

The Guitar dataset (available online in [39]) contains 7 clean
templates and 10 images with various lighting conditions. An
example of this dataset is shown in Figure 4. In [18], the best
performing method on this dataset was the MF method [17].
The original, single template ASC similarity performed better
on this dataset than POF, slightly less well than NCC but
much less well than the examined MF variants. Using the
sub-templates extension improved the performance of all sim-
ilarities but not to the same extent. The ASC similarity showed
the greatest improvement, making ASCsub the best performing

(a) (b)
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Fig. 5. Comparison of the C++ implementations of NCC, exact (naive) ASC,
and the fast ASC template matching scheme proposed in Section IV. The
proposed algorithm had an almost identical success rate to the full computation
(a), but was 744 times faster on average (b).

method with 67 correct matches out of 70 tests.

C. Execution Time

In order to evaluate the computational aspects of the ASC
template matching scheme we implemented the proposed fast
algorithm (Section IV) and an exact computation of ASC
for each image window in C++. FFT computations in both
these implementations used the FFTW3 library [40]. We
compared the performance of these programs to the openCV
implementation of the NCC (the ’cvMatchTemplate’ function).
The results are shown for 12 61 × 61 templates in the presence
of illumination changes and 10 noise levels.

Figure 5(a) shows that the success rate of the proposed fast
algorithm is almost identical to the exact full computation, and
significantly higher than NCC. On the other hand, the average
computation time for the fast algorithm was 274 milliseconds.
This was 5.9 times slower than NCC (54 milliseconds) and
on 744 times faster on average than the full ASC computation
(206.3 seconds = 3.4 minutes). A log10 plot of the execution
time is shown in Figure 5(b). It can be seen that the execution
time of the proposed fast scheme is independent of the noise
level.

VI. NOISE ROBUSTNESS ANALYSIS

We analyzed the robustness of the proposed ASC similarity
to additive white Gaussian noise. We assume w.l.o.g that the
given template q has zero mean and a variance var(q) =
qT q = 1.

One common measure of noise robustness of a similarity
function is the signal to noise ratio (SNR). Given a template q ,
the SNR of a similarity function ‘sim’ is

SN R(sim) = sim(q, q)2

var(sim(q, q + η))
(11)
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Fig. 6. Phase error variance (Section VI-A). In (a,b) two error measures are illustrated: cross correlation error (a) and phase error (b). In both figures the
complex number z = 1 + 0i (marked by a white point) is compared with a noisy number z + η, where η is complex Gaussian noise with zero mean and
variance σ 2 = 0.5. (a) measures the difference of the cross correlation from 1, while (b) measures the difference of the phase from 0. The value plotted at
each point x + iy is the error at that point multiplied by the probability Pr(x + iy). The variance of the cross correlation error equals the noise variance σ2.
The variance of the phase error, ρ2(σ 2) is much smaller. In (c) the phase error variance ρ2 is plotted as a function of the noise variance σ 2 in log2:log2
scale. ρ2 is smaller than min(σ 2, 1/2).
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Fig. 7. Comparison between the noise robustness of ASC and NCC
(Section VI-C). For each template size M × M we plot the noise standard
deviation σ from which S N R(ASC) ≥ S N R(ASC) (Equation 27). We
proved that for noise with standard deviation greater than σ , ASC is more
robust than NCC. For smaller standard deviation there is no theoretical
guarantee, but the practical performance of ASC is better (see Section V).

where η is white Gaussian noise with zero mean and vari-
ance σ 2. The larger the SNR the more robust the similarity is
to noise. By Equation 11, the SNR of the cross correlation is

(
qT q

)2

var
(

qT (q + η)
) = 1

σ 2 (12)

The cross correlation (a.k.a. matched filter) is the linear filter
with maximal SNR [5], [10]. However, NCC and ASC are
not linear correlation filters; i.e., they are non linear functions
of w. As shown below, the SNR of these similarities is higher
than the cross correlation.

A. SNR of ASC

From the definition of ASC (Equation 2) it follows that the
SNR of ASC is

(
ASC(q, q)

)2

var(ASC(q, q + η))

=
(∑

(u,v) |Quv |
)2

∑
(u,v) |Quv |2var

[
cos

(
θ(Quv ) − θ(Quv + ηuv )

)]

(13)

where θ(·) denotes the phase of a complex number and ηuv is
the noise added to each frequency; i.e., a complex Gaussian
noise ηuv ∼ N(0, σ 2). The decomposition of the denominator
in Equation 13 is based on the independence of white noise
across different frequencies (u, v).

On the right side of Equation 13 the noise ηuv appears
only inside cosine terms. Since the cosine is in [−1, 1], the
denominator of the right side in Equation 13 is smaller than

∑

(u,v)

|Quv |2 = qT q = 1 (14)

Therefore the SNR of ASC is greater than
( ∑

u,v

|Quv |
)2

which

is greater than 1. In the following we provide a tighter lower
bound on the SNR of ASC, and show that it is larger than the
SNR of the cross correlation and NCC.

Definition 1: Phase Error Variance: Let η be a complex
Gaussian noise, η ∼ N(0, σ 2). The phase error variance is
defined as

ρ2(σ 2) := var
[

cos
(
θ(1 + η)

)]
(15)

where θ(·) denotes the phase of a complex number.
The ρ2 function is analyzed in the Appendix, in which we

prove the following two claims:
Claim 1: For any σ it holds that ρ2(σ 2) ≤ 1/2.
Claim 2: Let z be a complex number with amplitude |z|

and phase θ(z), η complex Gaussian noise, η ∼ N(0, σ 2).
Then

var
[

cos
(
θ(z) − θ(z + η)

)]
= ρ2(

σ 2

|z|2 )

In the Appendix we evaluated ρ2(σ 2) for sampled σ 2 values.
This is done by developing the first and second moments of
cos

(
θ(1 + η)

)
and integrating them numerically.
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Figure 6 illustrates the difference between the cross corre-
lation error (6(a)) and the phase error (6(b)). In both graphs a
complex number z = 1 + 0i is compared to a noisy number
z+η. The cross correlation error is measured by |1−z(z+η)∗|,
and its variance equals to the noise variance σ 2. The phase
error is measured by cos

(
θ(z)−θ(z+η)

)
and by Definition 1

its variance is ρ2(σ 2). Note that ρ2(σ 2) � σ 2. This is because
that part of the noise is ignored when considering the phase
rather than the actual noisy number.

Figure 6(c) plots ρ2(σ 2) vs. σ 2 in log2:log2 scale. It can
be seen that ρ2 increases monotonically in σ 2 and that it
approaches 1/2 when σ 2 becomes large. For small noise levels
σ 2 we consistently have ρ2 � σ 2.

Using Claims 1 and 2, the SNR of ASC (Equation 13) can
be rewritten and bounded from below:

SN R(ASC) =
(∑

uv |Quv |
)2

∑
(u,v) |Quv |2ρ2

(
σ 2

|Quv |2
)

≥
2
(∑

uv |Quv |
)2

∑
(u,v) |Quv |2 (16)

In the following we use this lower bound to compare the SNR
of ASC and NCC.

B. SNR of NCC

Interestingly, the SNR of NCC is also related to the phase
error variance ρ2. Recall that q has, w.l.o.g, zero mean and
that NCC(q, q) = 1. Hence,

SN R(NCC) = 1

var
(

qT (q+η)
‖q‖‖q+η‖

)

= 1

var
(

cos(θ(q, q + η))
) (17)

where θ(q, q + η) is the angle between the two vectors q and
q+η. This angle is well defined since any two non zero vectors
q �= (q + η) span a unique 2D plane that crosses the origin.

Denote by P the pencil of all the 2D planes in RM

containing the origin and the point q . Since the noise is white
and Gaussian, the distribution of q + η on P is uniform. In
other words, the probability Pr(q + η ∈ P) is equal for all
the planes P ∈ P . Moreover, the conditional distribution of
q + η on each plane P is Gaussian and can be characterized
as follows.

Denote by xq , yq the projection of q on the 2D plane P , and
assume that q +η ∈ P . Let p(x, y) be the distribution of q +η
on P . Then p(x, y) is a 2D Gaussian distribution with mean
(xq , yq) and covariance σ 2 I . Equivalently, p(x, y) represents
a Gaussian distribution on 1D complex numbers x + iy with
mean x p + iyp and variance σ 2.

Since the vectors q and q + η are in the plane P , the
angle between their projections (x p, yp) and (x, y) equals
to θ(q, q + η). Considering the 2D coordinates x, y as 1D
complex numbers it follows that

θ(q, q + η) =
∣∣∣θ(x + iy) − θ(x p + iyp)

∣∣∣ (18)

Hence, by Definition 1 and Claim 2,

var(q+η)∈P

(
cos(θ(q, q + η))

)

= var(x,y)

(
cos

(
θ(x + iy) − θ(x p + iyp)

))

= ρ2(σ 2) (19)

Integrating over planes P ∈ P uniformly gives

SN R(NCC) = 1

ρ2(σ 2)
(20)

Since ρ2(σ 2) < σ 2, it always holds that SNR(NCC) >
SNR(cross correlation).

C. Comparison of the SNR Values

In the following we compare the SNR of the cross corre-
lation, NCC and ASC. We show that in the typical situation
where the template q is a natural image, ASC has a signifi-
cantly higher SNR than the cross correlation or NCC. For this
purpose we consider Field’s model for the power spectrum of
natural images [41].

Let F be the Fourier spectrum of a real world image.
According to Field’s model, the amplitudes of F coefficients
are inversely proportional to the norm of the frequency, so that

∀(u, v) |Fuv | = cF

‖(u, v)‖ (21)

where cF is a constant.
For simplicity we first consider the 1D case. Let q be a zero-

mean 1D template of size M which satisfies Field’s model, and
Q is its Fourier spectrum. Then

(∑
u |Qu |

)2

∑
u |Qu |2 =

(
cF

∑
u>0

1
|u|

)2

(cF )2
∑

u>0
1

u2

≥ ln2(M)

π2

6

> 0.6 ln2(M)

(22)
Dealing with the 2D case is better accomplished using a
continuous representation and polar coordinates. Let q be a
zero mean 2D template with radius m.7 Then

∫

u

∫

v
|Quv | dv du =

∫ m

r=1

∫ 2π

θ=0
|Qr,θ | dθ dr

=
∫ m

r=1
2πr · cF

r
dr

= 2πcF (m − 1) (23)

Similarly,
∫

u

∫

v
|Quv |2 dv du =

∫ m

r=1

∫ 2π

θ=0
|Qr,θ |2 dθ dr

=
∫ m

r=1
2πr · (cF )2

r2 dr

= 2π(cF )2 ln(m) (24)

Combining Equations 23 and 24 it follows that
( ∫

uv |Quv | dv du
)2

∫
uv |Quv |2 dv du

=
(

2πcF (m − 1)
)2

2π(cF )2 ln(m)
= 2π(m − 1)2

ln(m)
(25)

7 We discuss circular templates for simplicity alone. An analogous analysis
can be done with square templates but is more complicated.
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Based on Equation 25 we derive a lower bound for the ratio
between the SNR of ASC (Equation 16) and the SNR of NCC
(Equation 20):

SN R(ASC)

SN R(NCC)
≥

2
( ∫

u

∫
v |Quv | dv du

)2
ρ2(σ 2)

∫
u

∫
v |Quv |2 dv du

≥ ρ2(σ 2)
4π(m − 1)2

ln(m)
(26)

Hence, ASC is more robust than NCC where

ρ2(σ 2) ≥ ln(m)

4π(m − 1)2 (27)

Figure 7 plots for each templates size M × M (M = 2m + 1)
the noise standard deviation σ from which we proved that
SN R(ASC) ≥ SN R(NCC). For example, given a 61 × 61
template (radius m = 30) as in our major experiment in
Section V-A, ASC is more robust for noise standard deviation
σ ≥ 0.1561. In practice, as shown in Section V, ASC
outperforms NCC as well for smaller σ values, e.g. σ = 0.1.
This is because the above inequalities are based on the bound
ρ2(σ 2) ≤ 1/2 (used in Equation 16 to bound SN R(ASC))
which is not tight. Thus performance in practice is better than
in theory.

VII. SUMMARY

A robust and efficient template matching method using
asymmetric correlation (ASC) was presented. The proposed
ASC template matching is invariant to affine illumination
changes and highly robust to noise. This was shown both
theoretically and experimentally. An extension using robust
sums was presented which makes ASC template matching
robust to partial occlusions and spatially variant illumination
changes. Future work includes extending ASC to deal with
geometric transformations.

APPENDIX

VIII. PHASE ERROR VARIANCE

In Section VI-A we defined the phase error variance ρ2

as follows. Let η be complex Gaussian noise, η ∼ N(0, σ 2).
Then the phase error variance is

ρ2(σ 2) := var
[

cos
(
θ(1 + η)

)]
(28)

where θ(·) denotes the phase of a complex number.
Claim 1: ρ2(σ 2) ≤ 1/2

Proof: The noisy complex number 1 + η has a Gaussian
distribution N(1, σ 2). Its phase θ(1 + η), θ , has a unimod-
ular symmetric distribution on [−π, π] with a maximum at
zero. The maximum variance of cos

(
θ
)

is achieved when θ
distributes uniformly on [−π, π] (σ = ∞). In this case the
expectation is

E[cos(θ)] =
∫ π

θ=−π

1

2π
cos(θ)dθ = 0 (29)

and the variance equals the second moment,

var
(

cos(θ)
)

=
∫ π

θ=−π

1

2π
cos2(θ)dθ = 1

2
(30)

Thus ρ2(σ 2) < 1/2 independent of σ 2. �

A. ρ2 Calculation.

The value of ρ2(σ 2) can be calculated by the Cartesian
representation of the noisy complex number, 1+η = xη+i ·yη.
The expected value of the phase noise error is

μ1 = E
[

cos
(
θ(1 + η)

)]

= E
[ xη√

x2
η + y2

η

]

=
∫

x

∫

y

1

2πσ 2 exp
(

− (xη − 1)2 + y2
η

2σ 2

) xη√
x2
η + y2

η

dydx

(31)

The second moment is

μ2 = E
[

cos2 (
θ(I + η)

)]

= E
[ x2

η

x2
η + y2

η

]

=
∫

x

∫

y

1

2πσ 2 exp

(
− (xη − 1)2 + y2

η

2σ 2

)
xη

x2
η + y2

η

dydx

(32)

and the variance is

ρ2(σ 2) = μ2 − (μ1)
2 (33)

We calculated the values of μ1 and μ2 numerically using
Matlab. A log:log plot is shown in Figure 6(c). It can be seen
that ρ2 increases monotonically in σ 2 and that it approaches
1/2 when σ 2 becomes large. For small noise levels σ 2, we
have ρ2 � σ 2. This is because part of the noise is elimi-
nated due the Fourier coefficient normalization. Figure 6(a,b)
illustrates the difference between the noise error of the cross
correlation for a single frequency (u, v) where Quv = 1 + 0i
and the phase noise error.

Claim 2: Let z be a complex number with amplitude |z|
and phase θ(z), η a complex Gaussian noise, η ∼ N(0, σ 2).
Then

var
[

cos
(
θ(z) − θ(z + η)

)]
= ρ2

(
σ 2

|z|2
)

(34)

Proof: Let z0 be the complex number |z0| = |z|,
θ(z0) = 0. Then

θ(z) − θ(z + η) =
(
θ(z) − θ(z)

)
−

(
θ(z + η) − θ(z)

)

= −θ(z0 + η) (35)

Hence,

var
(

cos
(
θ(z) − θ(z + η)

)) = var
(

cos
( − θ(z0 + η)

))

= var
(

cos
(
θ(z0 + η)

)) = var
(

cos
(
θ(

z0 + η

|z| )
))

= var
(

cos
(
θ(1 + η

|z| )
)) = ρ2

(
σ 2

|z|2
)

� (36)
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