Best Project Center | Best project center in chennai, best project center in t.nagar, best project center in tnagar, Best final year project center, project center in Chennai, project center near me, best project center in mambalam, best project center in vadapalani, best project center in ashok nagar, best project center in Annanagar, best project center

Search Projects Here

9 Results Found

ACTIVITY RECOGNITION OF THE SPORT PERSON- Computer Vision-based Survey On Human Activity Recognition System Challenges And Applications

For Surveillance Purpose, Lots Of Method Were Used By The Researchers But Computer Vision Based Human Activity Recognition (HAR) Technologies/systems Received The Most Interest Because They Automatically Distinguish Human Behaviour And Movements From Video Data Utilizing Recorded Details From Cameras. But The Extraction Of Accurate And Opportune Information From Video Of Human's Activities And Behaviours Is Most Important And Difficult Task In Pervasive Computing Environment. Due To Lots Of Applications Of HAR Systems Like In Medical Field, Security, Visual Monitoring, Video Recovery, Entertainment And Irregular Behaviour Detection, The Accuracy Of System Is Most Important Factors For Researchers. This Review Article Presents A Brief Survey Of The Existing Video Or Vision-based HAR System To Find Out Their Challenges And Applications In Three Aspects Such As Recognition Of Activities, Activity Analysis, And Decision From Visual Content Representation. In Many Applications, System Recognition Time And Accuracy Is Most Important Factor And It Is Affected Due To An Increase In The Usage Of Simple Or Low Quality Type Cameras For Automated Systems. So, To Obtain A Better Accuracy And Fast Responses, The Usage Of Demanding And Computationally Intelligent Classification Techniques Such As Deep Learning And Machine Learning Is A Better Option For Researchers. In This Survey, We Addressed Numerous Computationally Intelligent Classification Techniques-based Research For HAR From 2010 To 2020 For A Better Analysis Of The Benefits And Drawbacks Of Systems, The Challenges Faced And Applications With Future Directions For HAR. We Also Present Some Accessible Problems And Ideas That Should Be Discussed In Future Research For The HAR System Utilizing Machine Learning And Deep Learning Principles Due To ThPeir Strong Relevance.

AIR CANVAS APPLICATION USING OPENCV AND NUMPY IN PYTHON

Writing In Air Has Been One Of The Most Fascinating And Challenging Research Areas In Field Of Image Processing And Pattern Recognition In The Recent Years. It Contributes Immensely To The Advancement Of An Automation Process And Can Improve The Interface Between Man And Machine In Numerous Applications. Several Research Works Have Been Focusing On New Techniques And Methods That Would Reduce The Processing Time While Providing Higher Recognition Accuracy. Object Tracking Is Considered As An Important Task Within The Field Of Computer Vision. The Invention Of Faster Computers, Availability Of Inexpensive And Good Quality Video Cameras And Demands Of Automated Video Analysis Has Given Popularity To Object Tracking Techniques. Generally, Video Analysis Procedure Has Three Major Steps: Firstly, Detecting Of The Object, Secondly Tracking Its Movement From Frame To Frame And Lastly Analysing The Behaviour Of That Object. For Object Tracking, Four Different Issues Are Taken Into Account; Selection Of Suitable Object Representation, Feature Selection For Tracking, Object Detection And Object Tracking. In Real World, Object Tracking Algorithms Are The Primarily Part Of Different Applications Such As: Automatic Surveillance, Video Indexing And Vehicle Navigation Etc.

BLIND PEOPLE GUIDENCE- Object Detection For Visually Impaired People Using SSD Algorithm

Visually Impaired People Are Unaware Of The Danger That They Are Facing In Their Life. They May Face Many Challenges While Performing Their Daily Activity Even In Their Familiar Environments. Vision Is The Necessary Human Senses And It Plays The Important Role In Human Perception About Surrounding Environment. Hence, There Are Variety Of Computer Vision Products And Services Which Are Used In The Development Of New Electronic Aids For Those Blind People. In This Paper We Designed To Provide Navigation To Those People. It Guides The People About The Object As Well As Provides The Distance Of The Object. The Algorithm Itself Calculates The Distance Of The Object. Here It Also Provides The Audio Jack To Insist Them About The Object. Here We Are Using SSD Algorithm For Object Detection And Calculating The Distance Of The Object By Using Monodepth Algorithm.

CROWD SOCIAL DISTANCE MEASUREMENT AND MASK DETECTION- Monitoring Pandemic Precautionary Protocols Using Real-time Surveillance And Artificial Intelligence

The Worst Possible Situation Faced By Humanity, COVID-19, Is Proliferating Across More Than 180 Countries And About 37,000,000 Confirmed Cases, Along With 1,000,000 Deaths Worldwide As Of October 2020. The Absence Of Any Medical And Strategic Expertise Is A Colossal Problem, And Lack Of Immunity Against It Increases The Risk Of Being Affected By The Virus. Since The Absence Of A Vaccine Is An Issue, Social Spacing And Face Covering Are Primary Precautionary Methods Apt In This Situation. This Study Proposes Automation With A Deep Learning Framework For Monitoring Social Distancing Using Surveillance Video Footage And Face Mask Detection In Public And Crowded Places As A Mandatory Rule Set For Pandemic Terms Using Computer Vision. The Paper Proposes A Framework Is Based On YOLO Object Detection Model To Define The Background And Human Beings With Bounding Boxes And Assigned Identifications. In The Same Framework, A Trained Module Checks For Any Unmasked Individual. The Automation Will Give Useful Data And Understanding For The Pandemic's Current Evaluation; This Data Will Help Analyse The Individuals Who Do Not Follow Health Protocol Norms.

DRIVER DROWSINESS DETECTION USING EYE GAZE DETECTION- Synchronous System For Driver Drowsiness Detection Using Convolutional Neural Network And Computer Vision

One Of The Major Reasons Behind Car Accidents Is The Drowsy Nature Acquired By A Driver While Driving Any Vehicle. Owing To The Ongoing Scenario, In This Project, We Aim To Develop A Real Time Driver Drowsiness Detection System In Order To Detect The Drivers' Fatigue Status, Such As Dozing, Flickering Of Eye Lids And Time Span Of Eye Closure Without Having To Equip Their Bodies With Devices. The Objective Of This Project Is To Build A Drowsiness Detection System That Will Detect That A Person's Eyes Are Closed For A Few Seconds. This System Will Alert The Driver When Drowsiness Is Detected. This Approach Is Based On The Convolutional Neural Network That Can Be Implemented On Android Applications With High Accuracy. Apart From CNN, Computer Vision Also Plays A Major Role To Detect The Drowsiness Pattern Of The Driver. Cloud Architecture Has Also Proved To Be Beneficial In Case Of Capturing And Analyzing Real Time Video Streams.

DRONE MOVEMENT ANALYSIS WITH REINFORCEMENT LEARNING Q- LEARNING Simulation Of Drone Controller Using Reinforcement Learning AI With Hyper Parameter Optimization

Drone Is One Of The Latest Drone Technologies That Grows With Multiple Applications; One Of The Critical Applications Is For Fire-fighting Drones Such As Water Hose Carrying For Firefighting. One Of The Main Challenges Of The Drone Technologies Is The Non-linear Dynamic Movement Caused By A Variety Of Fire Conditions. One Solution Is To Use A Nonlinear Controller Such As Reinforcement Learning. In This Paper, Reinforcement Learning Has Been Applied As Their Key Control System To Improve The Conventional Approach, Which Is The Agent (drone) That Will Interact With The Environment Without Need Of The Controller For The Flying Process. This Paper Is Introduced An Optimization Method For The Hyperparameter In Order To Achieve A Better Reward. In Addition, We Only Concentrate On The Learning Rate (alpha) And Potential Reward Factor Discount (gamma) For Optimization In This Paper. From This Optimization, The Better Performance And Response From Our Result By Using Alpha = 0.1 & Gamma = 0.8 With Reward Produced 6100 And It Takes 49 Seconds In The Learning Process.

OBJECT DETECTION USING CAFFE CNN YOLOV AND SSD- Object Detection And Tracking For Community Surveillance Using Transfer Learning

Automation Of Video Surveillance Is Gaining Extensive Interest Recently, Considering The Public Security Issues. In Recent Times, A Systematic And Exact Detection Of An Object Is A Foremost Point In Computer Vision Technology. With The Unfolding Of Recent Deep Learning Techniques, The Precision Of Detecting An Object Has Increased Greatly Thereby Igniting The Interest In This Area To Large Extent. Also, With The Advent Of Automatic Driving Electric Cars, The Accurate Detection Of Objects Has Gained Phenomenal Importance. The Main Aim Is To Integrate The State-of-the-art Deep Learning Method On Pedestrian Object Detection In Real-time With Improved Accuracy. One Of The Crucial Problems In Deep Learning Is Using Computer Vision Techniques, Which Tend To Slow Down The Process With Trivial Performance. In This Work, An Improved Yolov3 Transfer Learning-based Deep Learning Technique Is Used For Object Detection. It Is Also Shown That This Approach Can Be Used For Solving The Problem Of Object Detection In A Sustained Manner Having The Ability To Further Separate Occluded Objects. Moreover, The Use Of This Approach Has Enhanced The Accuracy Of Object Detection. The Network Used Is Trained On A Challenging Data Set And The Output Obtained Is Fast And Precise Which Is Helpful For The Application That Requires Object Detection.

SELF DRIVING CAR USING COMPUTER VISION- Simulation Of Self-driving Car Using Deep Learning

The Rapid Development Of Artificial Intelligence Has Revolutionized The Area Of Autonomous Vehicles By Incorporating Complex Models And Algorithms. Self-driving Cars Are Always One Of The Biggest Inventions In Computer Science And Robotic Intelligence. Highly Robust Algorithms That Facilitate The Functioning Of These Vehicles Will Reduce Many Problems Associated With Driving Such As The Drunken Driver Problem. In This Paper Our Aim Is To Build A Deep Learning Model That Can Drive The Car Autonomously Which Can Adapt Well To The Real-time Tracks And Does Not Require Any Manual Feature Extraction. This Research Work Proposes A Computer Vision Model That Learns From Video Data. It Involves Image Processing, Image Augmentation, Behavioural Cloning And Convolutional Neural Network Model. The Neural Network Architecture Is Used To Detect Path In A Video Segment, Linings Of Roads, Locations Of Obstacles, And Behavioural Cloning Is Used For The Model To Learn From Human Actions In The Video.

VIOLENCE DETECTION- Violence Detection From Video Under 2D Spatio-Temporal Representations

Action Recognition In Videos, Especially For Violence Detection, Is Now A Hot Topic In Computer Vision. The Interest Of This Task Is Related To The Multiplication Of Videos From Surveillance Cameras Or Live Television Content Producing Complex 2D+t Data. State-of-the-art Methods Rely On End-to-end Learning From 3D Neural Network Approaches That Should Be Trained With A Large Amount Of Data To Obtain Discriminating Features. To Face These Limitations, We Present In This Article A Method To Classify Videos For Violence Recognition Purpose, By Using A Classical 2D Convolutional Neural Network (CNN). The Strategy Of The Method Is Two-fold: (1) We Start By Building Several 2D Spatio-temporal Representations From An Input Video, (2) The New Representations Are Considered To Feed The CNN To The Train/test Process. The Classification Decision Of The Video Is Carried Out By Aggregating The Individual Decisions From Its Different 2D Spatio-temporal Representations. An Experimental Study On Public Datasets Containing Violent Videos Highlights The Interest Of The Presented Method.