We Propose An Algorithm For Encoding Quantized Post-interpolation Residuals Within The Framework Of Hierarchical Image Compression. This Coding Algorithm Is Based On A Hierarchical Representation Of The Plain Areas Of Quantized Post-interpolation Residuals To Improve The Coding Efficiency Of These Areas. The Proposed Algorithm Reorders The Post-interpolation Residuals To Increase The Size Of The Plain Areas. We Embed The Proposed Coding Algorithm For Post-interpolation Residuals Into A Hierarchical Image Compression Method. This Method Is Based On Interpolation The Image Scale Levels Using More Resampled Scale Levels Of The Same Image. The Errors Of This Interpolation (post-interpolation Residuals) Are Then Quantized And Encoded. We Use The Proposed Algorithm To Encode The Quantized Post-interpolation Residuals Of The Hierarchical Compression Method. We Perform Computational Experiments To Study The Effectiveness Of The Proposed Algorithm For A Set Of Natural Images. We Experimentally Confirm That The Use Of The Proposed Coding Algorithm For Post-interpolation Residuals Makes It Possible To Increase The Efficiency Of The Hierarchical Method Of Image Compression.
In This Paper An Efficient Crypto-watermarking Algorithm Is Proposed To Secure Medical Images Transmitted In Tele-medicine Applications. The Proposed Algorithm Uses Standard Encryption Methods And Reversible Watermarking Techniques To Provide Security To The Transmitted Medical Images As Well As To Control Access Privileges At The Receiver Side. The Algorithm Jointly Embeds Two Watermarks In Two Domains Using Encryption And Reversible Watermarking To Avoid Any Interference Between The Watermarks. The Authenticity And Integrity Of Medical Images Can Be Verified In The Spatial Domain, The Encrypted Domain, Or In Both Domains. The Performance Of The Proposed Algorithm Is Evaluated Using Test Medical Images Of Different Modalities. The Algorithm Preforms Well In Terms Of Visual Quality Of The Watermarked Images And In Terms Of The Available Embedding Capacity.
Medical Images Stored In Health Information Systems, Cloud Or Other Systems Are Of Key Importance. Privacy And Security Needs To Be Guaranteed For Such Images Through Encryption And Authentication Processes. Encrypted And Watermarked Images In This Domain Needed To Be Reversible So That The Plain Image Operated On In The Encryption And Watermarking Process Can Be Fully Recoverable Due To The Sensitivity Of The Data Conveyed In Medical Images. In This Paper, We Proposed A Fully Recoverable Encrypted And Watermarked Image Processing Technique For The Security Of Medical Images In Health Information Systems. The Approach Is Used To Authenticate And Secure The Medical Images. Our Results Showed To Be Very Effective And Reliable For Fully Recoverable Images.
We Introduce A Real-time Automatic License Plate Recognition System That Is Computationally Lighter By Eliminating The ROI Setting Step, Without Deteriorating Recognition Performance. Conventional License Plate Recognition Systems Exhibit Two Main Problems. First, Clear License Plate Visibility Is Required. Second, Processing Actual Field Data Is Computationally Intensive And The ROI Needs To Be Set. To Overcome These Problems, We Performed Plate Localization Directly On The Entire Image, And Conducted Research Taking Low Quality License Plate Detection Into Account. We Aim To Recognize The License Plates Of Cars Moving At High Speeds On The Road As Well As Stationary Cars Using The NVIDIA Jetson TX2 Module, Which Is An Embedded Computing Device.
This Paper Presents An Improved Secure Reversible Data Hiding Scheme In Encrypted Images Based On Integer Transformation, Which Does Not Need Using A Data Hider Key To Protect The Embedded Secret Data. We First Segment The Original Image Into Blocks Of Various Sizes Based On The Quadtree-based Image Partition. For Each Block, We Reserve M Least Significant Bits (LSBs) Of Each Pixel As Embedding Room Based On The Reversible Integer Transformation. In Order To Improve The Security Of The Image Encryption, We Pad The MLSBs Of Each Pixel Using The Corresponding (8-m) Most Significant Bits (MSBs) Information After The Transformation, Which Protects The Security Of The Encryption Key. Then, We Encrypt The Transformed Image With A Standard Stream Cipher. After The Image Encryption, The Data Hider Embeds The Secret Data In The MLSBs Of The Encrypted Images Through An Exclusive Or Operation. On The Receiving Side, The Receiver Can Extract The Secret Data After The Image Decryption And Recover The Original Image Without Loss Of Quality. The Security Analysis Shows That The Proposed Scheme Improves The Security Weakness Of The Scheme Directly Using Adaptive Integer Transformation. The Experimental Results Show That The Proposed Method Achieves A Higher Embedding Ratio Compared With Several Relevant Methods.