Real-time Communication (RTC) Is A New Standard And Industry-wide Effort That Expand The Web Browsing Model, Allowing Access To Information In Areas Like Social Media, Chat, Video Conferencing, And Television Over The Internet, And Unified Communication. These Systems Users Can View, Record, Remark, Or Edit Video And Audio Content Flows Using Time-critical Cloud Infrastructures That Enforce The Quality Of Services. However, There Are Many Proprietary Protocols And Codecs Available That Are Not Easily Interoperable And Scalable To Implement Multipoint Videoconference Systems. WebRTC (Web Real-Time Communication) Is A State-of-the-Art Open Technology That Makes Real-time Communication Capabilities In Audio, Video, And Data Transmission Possible In Real-time Communication Through Web Browsers Using JavaScript APIs (Application Programming Interfaces) Without Plug-ins. This Paper Aims To Introduce The P2P Video Conferencing System Based On Web Real-Time Communication (WebRTC). In This Paper, We Have Proposed A Web-based Peer-to-peer Real-time Communication System Using The Mozilla Firefox Together With The ScaleDrone Service That Enables Users To Communicate With Highspeed Data Transmission Over The Communication Channel Using WebRTC Technology, HTML5 And Use Node.js Server Address. Our Experiments Show That WebRTC Is A Capable Building Block For Scalable Live Video Conferencing Within A Web Browser.
Recent Developments In The Speed Of The Internet And Information Technology Have Made The Rapid Exchange Of Multimedia Information Possible. However, These Developments In Technology Lead To Violations Of Information Security And Private Information. Digital Steganography Provides The Ability To Protect Private Information That Has Become Essential In The Current Internet Age. Among All Digital Media, Digital Video Has Become Of Interest To Many Researchers Due To Its High Capacity For Hiding Sensitive Data. Numerous Video Steganography Methods Have Recently Been Proposed To Prevent Secret Data From Being Stolen. Nevertheless, These Methods Have Multiple Issues Related To Visual Imperceptibly, Robustness, And Embedding Capacity. To Tackle These Issues, This Paper Proposes A New Approach To Video Steganography Based On The Corner Point Principle And LSBs Algorithm. The Proposed Method First Uses Shi-Tomasi Algorithm To Detect Regions Of Corner Points Within The Cover Video Frames. Then, It Uses 4-LSBs Algorithm To Hide Confidential Data Inside The Identified Corner Points. Besides, Before The Embedding Process, The Proposed Method Encrypts Confidential Data Using Arnold’s Cat Map Method To Boost The Security Level.
The Security Of Any Public Key Cryptosystem Depends On The Private Key Thus, It Is Important That Only An Authorized Person Can Have Access To The Private Key. The Paper Presents A New Algorithm That Protects The Private Key Using The Transposition Cipher Technique. The Performance Of The Proposed Technique Is Evaluated By Applying It In The RSA Algorithm's Generated Private Keys Using 512-bit, 1024-bit, And 2048-bit, Respectively. The Result Shows That The Technique Is Practical And Efficient In Securing Private Keys While In Storage As It Produced High Avalanche Effect.
Initially The Barcodes Have Been Widely Used For The Unique Identification Of The Products. Quick Response I.e. QR Codes Are 2D Representation Of Barcodes That Can Embed Text, Audio, Video, Web URL, Phone Contacts, Credentials And Much More. This Paper Primarily Deals With The Generation Of QR Codes For Question Paper. We Have Proposed Encryption Of Question Paper Data Using AES Encryption Algorithm. The Working Of The QR Codes Is Based On Encrypting It To QR Code And Scanning To Decrypt It. Furthermore, We Have Reduced The Memory Storage By Redirecting To A Webpage Through The Transmission And Online Acceptance Of Data.
Communication Technology Has Completely Occupied All The Areas Of Applications. Last Decade Has However Witnessed A Drastic Evolution In Information And Communication Technology Due To The Introduction Of Social Media Network. Business Growth Is Further Achieved Via These Social Media. Nevertheless, Increase In The Usage Of Online Social Networks (OSN) Such As Face Book, Twitter, Instagram Etc Has However Led To The Increase In Privacy And Security Concerns. Third Party Applications Are One Of The Many Reasons For Facebook Attractiveness. Regrettably, The Users Are Unaware Of Detail That A Lot Of Malicious Facebook Applications Provide On Their Profile. The Popularity Of These Third Party Applications Is Such That There Are Almost 20 Million Installations Per Day. But Cyber Criminals Have Appreciated The Popularity Of Third Party Applications And The Possibility Of Using These Apps For Distributing The Malware And Spam. This Paper Proposes A Method To Categorize A Given Application As Malicious Or Safe By Using FRAppE (Facebook's Rigorous Application Evaluator), Possibly One Of The First Tool For Detecting Malicious Apps On The Facebook. To Develop The FRAppE, The Data Is Gathered From MyPagekeeper Application, A Website That Provides Significant Information About Various Third Party Applications And Their Insight Into Their Behavior.