Best Project Center | Best project center in chennai, best project center in t.nagar, best project center in tnagar, Best final year project center, project center in Chennai, project center near me, best project center in mambalam, best project center in vadapalani, best project center in ashok nagar, best project center in Annanagar, best project center
In Order To Prevent The Disclosure Of Sensitive Information And Protect Users' Privacy, The Generalization And Suppression Of Technology Is Often Used To Anonymize The Quasi-identifiers Of The Data Before Its Sharing. Data Streams Are Inherently Infinite And Highly Dynamic Which Are Very Different From Static Datasets, So That The Anonymization Of Data Streams Needs To Be Capable Of Solving More Complicated Problems. The Methods For Anonymizing Static Datasets Cannot Be Applied To Data Streams Directly. In This Paper, An Anonymization Approach For Data Streams Is Proposed With The Analysis Of The Published Anonymization Methods For Data Streams. This Approach Scans The Data Only Once To Recognize And Reuse The Clusters That Satisfy The Anonymization Requirements For Speeding Up The Anonymization Process. Experimental Results On The Real Dataset Show That The Proposed Method Can Reduce The Information Loss That Is Caused By Generalization And Suppression And Also Satisfies The Anonymization Requirements And Has Low Time And Space Complexity.